
4 The type I seesaw

4.1 Some curious features of Dirac neutrino masses

Puzzle 1: if the observed neutrino masses are Dirac : mνLνR + hc, why are neutrino Yukawa eigenvalues ≪ other
fermions?
Some solutions:

• in SUSY, put a symmetry to forbid as an F-term. Appears in SUGRA as a D-term ∝ mSUSY /mpl.ArkaniHamed Borzumati

• in extra dimensions, νR and νL live in different places: little overlap. Grossman+Neubert...

• Ignore this puzzle: we don’t understand Yukawas

• ...

Puzzle 2: νR is gauge singlet, why does it not have a majorana mass? (not forbidden by SM gauge symmetries...)
A solution:

• Put a symmetry. Such as lepton number L, or B − L.

Another solution

• Put a mass...



4.2 The Type I seesaw

4.2.1 One generation

Adding a gauge-singlet/right-handed/sterile νR (or sometimes called N) allows “Dirac” masses for νs:
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But the νR has no gauge interactions, so its allowed a mass:
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Adding a right-handed (sterile) νR with all renorm. interactions:
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⇒ neutrino mass matrix:
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⇒ 4-component “majorana” eigenvectors νm, n, such that PLνm ≃ νL with mass mν ∼ m2
D

M , PRn ≃ νR with mass
∼ M . More precisely, for M ≫ λv:
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(so trace remains M , as should be), and the right-handed eigenvectors are
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(4.47)

so at order ǫ2, I can take ε = ǫ.
We will be interested to calculate to O(ǫ2), because the massive light ν contribution obtained in the Dirac case was

O(m2
ν), which in the Majorana case means O(M−2), so we need all terms of O(M−2).



4.2.2 The Type 1 See-Saw in three generations

• in the charged lepton (“flavour”) and singlet νR mass bases, at large energy scale ≫ Mi:
21 parameters chez les leptons:

me,mµ,mτ ,M1,M2,M3

18 - 3 (ℓ phases) in λ
L = LSM + λ∗

αJℓα ·HNJ −
1

2
NJMJN

c
J

• at energy scales ≪ M , get effective lepton number violating “contact interaction” (ℓcH)(Hℓ) of mass dimension 5,

which, with EWSB, gives majorana masses to doublet neutrinos:
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12 parameters:
me,mµ,mτ ,m1,m2,m3

6 in UMNS

λM−1λT〈H0〉2 = [mν] = U ∗DmU
†

• notice that U is the unitary PMNS matrix, transforming between charged lepton and doublet neutrino mass eigen-
states. The mixing of doublets and singlets, which induces non-unitarity, is not present at order 1/M in an effective
theory without the singlets!



4.3 µ → eγ in the type 1 seesaw

It is often said that the caln of µ → eγ for Dirac neutrino masses applies for Majorana masses as well, because the
calculation done for Dirac would be the same with Majorana masses. This is true. BUT, Majorana masses only can

arise from a non-renormalisable operator, so the NP responsable for that operator could give other contributions to
µ → eγ which could be more or less important. We want to see the other contributions for the type I seesaw.

The aim is to understand, from a bottom-up effective field theory perspective, why the light mass contribution
is insufficient (is that obvious? Is it model-dependent?), and whether there are other low-energy traces of the other
contributions.

4.3.1 A toy model

Suppose add one singlet fermion N , with majorana mass M , to the two generation SM. Leptonic Lagrangian will be
(for H the SM Higgs, and SUSY conventions with * on Yukawas, so superpotential y∗eLHEc)
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2
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∗eα + h.c. (4.48)
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for α = e, µ.



4.4 Calculating µ → eγ in the mass basis, with the complete particle content

4.4.1 Lagrangian

After EWSB, the mass terms become

Lmass → −λαναLH
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2
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= −|λ|vν2NR − M

2
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for α = e, µ.
The massive doublet neutrino is ν2:
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and the unitary mixing matrix Uαi between the mass eigenbasis of νi and eL is

U =


 c s
−s c




Recall the Majorana masses are

M(1 + ε2),−ε2M , ε =
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M

and the right-handed components of the Majorana mass eigenstates νm, n are
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Implicitely, on the left in eqn (4.47), I took n and νm to be 4-component majorana fermions, so e.g. ν2 = 1√
1+ǫ2

PL(νm + ǫn)



The kinetic terms will be (overall signs consistent with C+L claim that F rules are i× interaction, and their F rule for W : ig/
√
2PL, and signs among

bosons agrees with conventions of C+L appendix, where have iD/ = iγµ(∂µ + eAµ) for the electron Qe = −1)
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The charged goldstone couplings (need later for F-rules) are
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4.4.2 diagrams

Notice that we no longer need the wave-fn renormalisation diagrams, because they do not contribute to the dipole.
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Figure 4.1: One-loop diagrams that contribute to µ → eγ, calculating with broken EW symmetry. H is the goldstone. The vector momenta
are ingoing, and µ,ν are the Lorentz indices of the γ matrices at the doublet lepton vertices.

4.4.3 Simplifications

• Neglect electron mass

• Neglect any contributions to M of higher order than O(1/M2) (the light mass contribution is this size).

• Feynman ’tHooft gauge (ξ=1)

W prop ∝ −i
gµν

p2 −m2
W

, goldstone prop ∝ i
1

p2 −m2
W



4.4.4 estimates — Feynman ’tHooft gauge, the heavy n

The W diagram: Recall the W propagator in Feynman ’tHooft gauge ∝ gµν . And the n−W vertex is ∝ the small
mixing angle ǫ ∝ 1/M , so to get a contribution to M(µ → eγ) of O(1/M2), need “a quad divergence” inside the loop

that cancels the 1/M2 of the n propagator.

• The diagram is already multiplied by ǫ2 = |λ|2v2/M2.

• in the γσgσαV
αβµgβργ

ρ contraction, only the the (p+ − p−) · ε term will survive from V (γµε
µ not contribute to mag mo).

• Then there is another upstairs momentum factor from upstairs in the n propagator

• but the mag mo is the coeff of p · ε, so upstairs will have no powers of loop integration momentum k, and

downstairs there are three propagators, so convergent integral:
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With integration variable shift k′ = k + xp+ yq, and using ueq/ uµ = ue(p/ µ − p/ e)uµ ≃ uemµuµ, get

≃ −(−2)e
ǫ2g2

2
ue

∫ d4k′

(2π)4

∫
dxdy

p/ (1− x− y)

[k′2 −m2
W (1− x)− xM2]3

uµ2xp · ε (4.57)
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 (4.59)

So in F-’tH gauge (ξ = 1), the WWn diagram does not contribute to the O(1/M2) matrix element.



The goldstone diagrams:

1)in the two diagrams with a scalar/goldstone and a W , the WγH vertex is ∝ iQHemWgσα, so do not contribute at
O(1/M2) : the εσg

σα combined with gαµ of the W propagator gives γσε
σ, which is a QED vertex renorm.

2) The diagram with two scalar propagators gives
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Shift the integration variable to k′ = k + xp+ yq, do Feynman reparam, and drop mµ inside the integral:
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where on second line, extracted the 2p · ε. The convergent d̃k integration gives
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Compare to Dirac neutrino estimate:
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=

√
2

4v2
emµsc|λv|4
16π2m2

WM2
∼ esc|λ|4mµ

8π2g2M2

light neutrino contribution has an additional factor λ2/g2! (but maybe λ >∼ g).



4.4.5 estimates — Feynman ’tHooft gauge, the light neutrinos

Recall that for Dirac neutrinos, the leading contribution to LFV vanished due the unitarity of the mixing matrix
(this was the GIM mechanism). But now the mixing matrix is no longer exactly unitary (light neutrinos mix with

the heavy singlet), so we want to estimate this contribution in our toy model. We do not want to re-discover the
light-neutrino-mass contribution we already calculated in the Dirac case, so we neglect the light neutrino masses (but

not mixing angles) inside the loop. The sum of the exchange of ν1 and νm will therefore give a factor

−sc+
sc
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= sc

|λ|v2
M2

(4.63)

The WW diagram:

• in the γσgσαV
αβµgβργ

ρ contraction, only the the (p+ − p−) · ε term will survive from V (pcq γµε
µ ne contribue

pas a mag mo).

• Then there is another upstairs momentum factor from upstairs in the n propagator, which use to flip chirality

on external leg = get mµ.

• the mag mo is the coeff of p · ε, so upstairs will have no powers of loop integration momentum k, and downstairs
there are three propagators, so convergent integral:
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With integration variable shift k′ = k + xp+ yq, and using ueq/ uµ = ue(p/ µ − p/ e)uµ ≃ uemµuµ, get
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(where mutiplied by eqn (4.63).



The W -goldstone diagrams: vanish in F’tH gauge, because the Wγgoldstone vertex in the last two diagrams is

∝ iQφemWgσα (it has a Higgs vev leg), so the εσg
σα combined with gαµ of the W propagator gives γσε

σ, which is a
QED vertex renormalisation.

The goldstone diagram: The goldstone will not couple to ν1 via λ, because ν1 is massless.

Then eL couples via λ to the N component of ν2, which is only a fraction ǫ of ν2 (recall that we are not interested in
contributions to µ → eγ which are ∝ me, so we cannot couple the goldstone to eL via ye). And maybe ν2 can turn

into µR at the other goldstone vertex: (should worry about signs of goldstone couplings, since we sum to the WW
diagram)

Maybe we can forget this diagram, since it is parametrically not bigger than theWW diagram, and maybe smaller...

4.4.6 adding up the estimates

We found contributions to the µ → eγ matrix element of order

σX ∼ esc|λ|2mµ

16π2M2
(4.66)

from the exchange of the heavy and light mass eigenstate neutrinos.

1. one could worry that the contributions sum to zero. In the next two sections, we learn from the literature that
this is not the case.

2. this contribution can be compared to the light-neutrino-mass contribution, of order

σX ∼ esc|λ|4mµ

16π2g2M2

3. the µ → eγ branching ratio, due to amplitude estimated in (??), is

m3
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2
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5
µ/(192π
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=
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R)96π
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4π

|λ|4v4
πM4

∼ αem
m2
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M2

The current experimental limit is <∼ 6×10−13. To reach that rate in the type 1 seesaw, would need M ∼ 105mν ∼
10 keV. Maybe our calculation and the type 1 seesaw are doubtful with such small singlet masses....



4.4.7 Conventions of Lavoura paper Lavoura, hep-ph/0302221, EPJC29(2003)191

Lavoura writes the matrix element

M = ε∗µue(σLΣ
µ
L + σRΣ

µ
R + δL∆

µ
L + δR∆

µ
R)uµ (4.67)

where the lower case σL, σR, δL, and δR are numerical coefficients of mass dimension 1/m, and

Σν
L,R = (pνµ + pνe)PL,R − γν(mePL,R +mµPR,L) (4.68)

= iσνρqρ(σLPL + σRPR)

(notice the coefficient of the dipole is the coeff. of ε · pµ, provided M is expanded on operators made of ≤ 1 γs)

∆ν
L,R = qνPL,R +

q2

m2
e −m2

µ

γν(mePL,R +mµPR,L)

with σνρ defn of these notes, P+S and C+L. The ∆s are irrelevant for on-shell γ pcq q2 = 0 et q · ǫ = 0.

In this notation, have

Γ(µ → eγ) =
m3

µ(|σL|2 + |σR|2)
16π

(4.69)

Lavoura allows for a gauge interaction of the form

Lgauge = WαFγα(a′LiPL + a′RiPR)fi +W ∗
αfiγ

α(a
′∗
LiPL + a

′∗
RiPR)F (4.70)

(donc QW = +1 pcq ingoing with fi) whose coefficients can be obtained by comparing to eqn (4.54). Lavoura takes goldstone φ with
Lagrangian

Lgoldstone =
i

mW

φF [(a′Rimi − a′LimF )PL + (a′Limi − a′RimF )PR]fi + h.c. (4.71)

I think goldstones are Higgs, despite the i. Lavoura supposes a W+
α (p+)W

−
β (p−)Aσ(−q) interacton with ingoing momenta

ieQW [gαβ(p+ − p−)
σ − gσα(p+ + q)β + gσβ(p− + q)α] (4.72)



4.4.8 (exact) results (with relative sign) from Lavoura

We need the contributions from the exchange of the heavy neutrino n:

σR = −1

3

ie|λ|2scmµ

16π2M2
n exchange (4.73)

and of the light neutrino ν2

σR =
ieg2scmµ

2 · 16π2m2
W

−10

12

(
−1 +

1

1 + ǫ2

)
≃ 5

6

ie|λ|2scmµ

16π2M2
νi exchange (4.74)

These are of the same order as our estimates, and do not add to zero.



4.5 from a low E perspective : where did those extra contributions comme from?

We have seen that at energies much below the mass of a particle (leptoquark, W , N ...) its effects can be approximated
as contact interactions among the propagating particles of your theory. So can we remove the heavy n from our theory,

and replace its effects by contact interactions?
Clearly, n contributes at one loop to the dipole operator. When we removed the W from the SM with Dirac

neutrino masses, we kept a dipole operator that the W induced at one loop, so surely we can do it for the n too? So
in our theory-without-n, we should include, from eqn (4.72)

−1

3

ie|λ|2scmµ

16π2M2
ℓeH

∗σαβPRµF
αβ + h.c.

Then there is also the “non-unitary” contribution of νm. We can mimic this effect by augmenting the νm inverse

propagator by a factor ǫ2 (that is, we generate a propagator with coefficient 1/(1 + ǫ2) as in eqn (4.73). This can be
done by adding the following dimension six operator

i
|λ|2
M2

ℓmH
c∗D/ Hcℓm (4.75)

where the coefficient was fixed from eqn (4.73), and there is an i because i∂/ appears in L.
Then of course, there is also the dimension 5 majorana mass operator, which we already introduced. Since the

dipole operator is of dimension six, it should be no surprise that we did not get the correct µ → eγ rate by removing

n from the theory and replacing it only with a dimension 5 operator. We see that if we also include some dimension
6 operators in the thoery-without-n, we can get the right answer.

Maybe this all appears ad hoc: we can reproduce the answer when we know what it is. In the next chapter we will
see the recipe for consistently removing heavy particles and replacing them with local contact interactions.


